Relationship between Technology Acceptance and Technology Anxiety among Iranian EFL Learners

Document Type : Original Article


Department of English language, Kerman Branch, Islamic Azad University, Kerman, Iran


The ongoing Covid-19 pandemic has caused unforeseen interruptions in education worldwide. Many countries have responded to the pandemic crisis by switching to online distance education. To address this need, the current study examined the relationship between technology acceptance and technology anxiety in the EFL context of Iran. Study participants included 116 Iranian students enrolled in B.A. English language courses in English language teaching, translation, and literature at Islamic Azad University, Kerman Branch. The data were derived from Abdul Ghani et al. 's technology acceptance questionnaire (2019) and Loyd and Gressard's (1984) technology anxiety questionnaire. After analyzing the data, the results demonstrated a significant negative correlation between technology acceptance, perceived usefulness, perceived ease of use, behavioral intention to use, attitude, and technology anxiety. An increase in technology acceptance and its components led to a decrease in technology anxiety, and perceived ease of use was the strongest component of technology acceptance to predict technology anxiety. Moreover, the first feature of technology acceptance was perceived ease of use, and the last feature was the behavioral intention to use it. Participants’ major was not a meaningful mediator affecting the relationship between technology acceptance and technology anxiety. Therefore, minimizing technology anxiety and optimizing the effectiveness of technology in educational contexts requires teachers, students, and curriculum designers to consider students' readiness and acceptance of technology.


Article Title [Persian]

رابطه پذیرش فناوری و اضطراب فناوری در زبان آموزان ایرانی

Abstract [Persian]

همه گیری مداوم کووید-19 باعث وقفه های غیرقابل پیش بینی در آموزش در سراسر جهان شده است. بسیاری از کشورها با روی آوردن به آموزش از راه دور آنلاین به بحران همه گیر پاسخ داده اند. برای رفع این نیاز، مطالعه حاضر به بررسی رابطه بین پذیرش فناوری و اضطراب فناوری در زمینه EFL ایران پرداخته است. شرکت کنندگان در مطالعه شامل 116 دانشجوی ایرانی بودند که در مقطع کارشناسی ارشد ثبت نام کرده بودند. دوره های آموزش زبان انگلیسی، مترجمی و ادبیات انگلیسی در دانشگاه آزاد اسلامی واحد کرمان. داده ها از عبدالغنی و همکاران استخراج شده است. پرسشنامه پذیرش فناوری (2019) و پرسشنامه اضطراب فناوری لوید و گرسارد (1984). پس از تجزیه و تحلیل داده ها، نتایج نشان داد که بین پذیرش فناوری، سودمندی درک شده، سهولت استفاده درک شده، قصد رفتاری برای استفاده، نگرش و اضطراب فناوری رابطه منفی معناداری وجود دارد. افزایش پذیرش فناوری و مؤلفه‌های آن منجر به کاهش اضطراب فناوری شد و سهولت درک شده قوی‌ترین مؤلفه پذیرش فناوری برای پیش‌بینی اضطراب فناوری بود. علاوه بر این، اولین ویژگی پذیرش فناوری درک سهولت استفاده و آخرین ویژگی، قصد رفتاری برای استفاده از آن بود. رشته تحصیلی شرکت کنندگان یک میانجی معنادار نبود که بر رابطه بین پذیرش فناوری و اضطراب فناوری تأثیر بگذارد. بنابراین، به حداقل رساندن اضطراب فناوری و بهینه‌سازی اثربخشی فناوری در زمینه‌های آموزشی، معلمان، دانش‌آموزان و طراحان برنامه درسی را می‌طلبد که آمادگی و پذیرش فناوری دانش‌آموزان را در نظر بگیرند.

Keywords [Persian]

  • کلاس های درس یکپارچه با فناوری
  • پذیرش فناوری
  • اضطراب فناوری
Abdous, M. (2019). Influence of satisfaction and preparedness on online students’ feelings of  anxiety. The Internet and Higher Education, 41, 34-44.
Abdullah, F., Ward, R., & Ahmed, E. (2016). Investigating the influence of the most commonly used external variables of TAM on students’ Perceived Ease of Use (PEOU) and Perceived Usefulness (PU) of e-portfolios. Computers in Human Behavior, 63, 75–90.
Aguilera-Hermida, A. P. (2020). College students’ use and acceptance of emergency online learning due to COVID-19. International Journal of Educational Research Open, 1, 100011.
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179–211.
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. 90020-
Al-Fraihat, D., Joy, M., & Sinclair, J. (2020). Evaluating E-learning systems success: An empirical study. Computers in Human Behavior, 102, 67–86.
Arendt, J., Peacemaker, B., & Miller, H. (2019). Same question, different world: replicating an open access research impact study. College & Research Libraries, 80(3), 303.
Azizi, Z., Rezai, A., Namaziandost, E., & Tilwani, S. A. (2022). The Role of Computer Self-Efficacy in High School Students’ E-Learning Anxiety: A Mixed-Methods Study.  Contemporary Educational Technology, 14(2), ep356. 
Baber, H. (2021). Modelling the acceptance of e-learning during the pandemic of COVID-19-A study of South Korea. The International Journal of Management Education, 19(2), 100503.
Baby, A., & Kannammal, A. (2020). Network path analysis for developing an enhanced TAM model: A user-centric e-learning perspective. Computers in Human Behavior, 107, 106081.
Baji, F., Azadeh, F., Sabaghinejad, Z., & Zalpour, A. (2022). Determinants of e-learning acceptance amongst Iranian postgraduate students. Journal of Global Education and Research, 6(2), 181-191.
Bandura, A. (1986). Social foundations of thought and action—A social cognitive theory. Englewood Cliffs, NJ: Prentice Hall.
Bandura, A. (1986). The explanatory and predictive scope of self-efficacy theory. Journal of Social and Clinical Psychology, 4(3), 359-373.
Bao, W. (2020). COVID-19 and online teaching in higher education: A case study of Peking   University. Human Behavior and Emerging Technologies, 2(2), 113–115.
Bates, R., & Khasawneh, S. (2007). Self-efficacy and college students’ perceptions and use of  online learning systems. Computers in Human Behavior, 23(1), 175-191.
Baylari, A., & Montazer, G. A. (2009). Design a personalized e-learning system based on item response theory and artificial neural network approach. Expert Systems with Applications, 36(4), 8013–8021.
Blake, R. (2016). Technology and the four skills. Language Learning and Technology, 20, 129–142.
Bozionelos, N. (2001). Computer anxiety: relationship with computer experience and prevalence. Computers in human behavior, 17(2), 213-224.
Brooks, S. K., Webster, R. K., Smith, L. E., Woodland, L., Wessely, S., Greenberg, N., & Rubin, G. J. (2020). The psychological impact of quarantine and how to reduce it: rapid review of the evidence. The lancet, 395(10227), 912–920.
Bunz, U., Seibert, J., & Hendrickse, J. (2020). From TAM to AVRTS: Development and validation of the attitudes toward virtual reality technology scale. Virtual Reality, 25(1), 31–41. 
Chan, K., Brown, I., Chung, I. C. B., Lu, H., & Luk, G. W. (2013, June). Using students’ response system via mobile devices in large introductory psychology classes. In Proceedings of the 8th International Conference on e-Learning (Vol. 1, pp. 76-81).
Chao, C. M. (2019). Factors determining the behavioral intention to use mobile learning: An application and extension of the UTAUT model. Frontiers in Psychology, 10, 1–14.
Chua, S. L., Chen, D. T., & Wong, A. F. (1999). Computer anxiety and its correlates: a meta-analysis. Computers in human behavior, 15(5), 609-623.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use and the user acceptance of information technology. MIS Quarterly, 13(3), 318‒339.
Deci, E. L. (1971). Effects of externally mediated rewards on intrinsic motivation. Journal of Personality and Social Psychology, 18(1), 105–115.
Dindar, M., Suorsa, A., Hermes, J., Karppinen, P., & Näykki, P. (2021). Comparing technology acceptance of K‐12 teachers with and without prior experience of learning management systems: A Covid‐19 pandemic study. Journal of Computer Assisted Learning, 37(6), 1553-1565.
Dwivedi, Y. K., Rana, N. P., Chen, H., & Williams, M. D. (2011, September). A Meta-analysis of the Unified Theory of Acceptance and Use of Technology (UTAUT). In IFIP international working conference on governance and sustainability in information systems-managing the transfer and diffusion of it (pp. 155-170). Springer, Berlin, Heidelberg.
Elkaseh, A. M., Wong, K. W., & Fung, C. C. (2016). Perceived ease of use and perceived usefulness of social media for e-learning in Libyan higher education: A structural equation modeling analysis. International Journal of Information and Education Technology, 6(3), 192.
Eraslan Yalcin, M., & Kutlu, B. (2019). Examination of students’ acceptance of and intention to use learning management systems using extended TAM. British Journal of Educational Technology, 50(5), 2414–2432.
Farzandipour, M., Nabovati, E., Arani, M. H., Akbari, H., Sharif, R., & Anvari, S. (2019). Enhancing asthma patients' self-management through smartphone-based application: design, usability evaluation, and educational intervention. Applied clinical informatics, 10(05), 870-878.
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley
Fu, Q. K., Lin, C. J., & Hwang, G. J. (2019). Research trends and applications of technology-supported peer assessment: A review of selected journal publications from 2007 to 2016. Journal of Computers in Education, 6(2), 191–213.
Garzón, J., & Bautista, J. (2018). Virtual algebra tiles: A pedagogical tool to teach and learn algebra through geometry. Journal of Computer Assisted Learning, 34(6), 876–883.
Ghani, M. T. A., Daud, W. A. A. W., & Jaffar, M. N. (2019). Penerimaan pelajar kursus bahasa arab di universiti malaysia kelantan terhadap pembelajaran teradun berteraskan model penerimaan teknologi (TAM). Asian People Journal (APJ), 2(1), 84-94.
Glahn, C., & Gruber, M. R. (2020). Designing for context-aware and contextualized learning. In Emerging technologies and pedagogies in the curriculum (pp. 21–40). Singapore: Springer.
Goh, C. F., Hii, P. K., Tan, O. K., & Rasli, A. (2020). Why do university teachers use E-learning systems? International Review of Research in Open and Distance Learning, 21(2), 136–155.
Guo, T., Ma, F., & Liu, F. (2013). An ERP study of inhibition of non-target languages in trilingual word production. Brain and language, 127(1), 12-20.
Heckel, C., & Ringeisen, T. (2019). Pride and anxiety in online learning environments: Achievement emotions as mediators between learners' characteristics and learning outcomes. Journal of Computer Assisted Learning, 35(5), 667–677.
Henry, A. (2018). Online media creation and L2 motivation: A socially situated perspective. Tesol quarterly, 53(2), 372-404.
Hsu, M. K., Wang, S. W., & Chiu, K. K. (2009). Computer attitude, statistics anxiety and self-efficacy on statistical software adoption behavior: An empirical study of online MBA learners. Computers in human behavior, 25(2), 412-420.
Joksimovic, S., Gaševic, D., Kovanovic, V., Riecke, B. E., & Hatala, M. (2015). Social presence in online discussions as a process predictor of academic performance. Journal of Computer Assisted Learning, 31(6), 638–654.
Kemp, A., Palmer, E., & Strelan, P. (2019). A taxonomy of factors affecting attitudes towards educational technologies for use with technology acceptance models. British Journal of Educational Technology, 50, 2394-2413. doi:10.1111/bjet.12833
Kemp, A., Palmer, E., & Strelan, P. (2019). A taxonomy of factors affecting attitudes towards educational technologies for use with technology acceptance models. British Journal of  Educational Technology, 50(5), 2394-2413.
Khlaif, Z. N., Salha, S., Affouneh, S., Rashed, H., & ElKimishy, L. A. (2020). The Covid-19 epidemic: Teachers' responses to school closure in developing countries. Technology, Pedagogy and Education, 1–15.
Korobili, S., Togia, A., & Malliari, A. (2010). Computer anxiety and attitudes among undergraduate students in Greece. Computers in Human Behavior, 26(3), 399-405.
Kulik, J. A., & Fletcher, J. D. (2016). Effectiveness of intelligent tutoring systems: A meta-analytic review. Review of Educational Research, 86, 42–78.
Lai, J. W., & Bower, M. (2019). Evaluation of technology use in education: Findings from a   critical analysis of systematic literature reviews. Journal of Computer Assisted Learning, 36(3), 241-259.
Lai, J. W., & Bower, M. (2019). How is the use of technology in education evaluated? A systematic review. Computers & Education, 133, 27–42.
Laurillard, D., Charlton, P., Craft, B., Dimakopoulos, D., Ljubojevic, D., Magoulas, G., ... & Whittlestone, K. (2013). A constructionist learning environment for teachers to model learning designs. Journal of computer-assisted learning, 29(1), 15-30.
Lee, M. C. (2010). Explaining and predicting users’ continuance intention toward e-learning: An extension of the expectation–confirmation model. Computers & Education, 54(2), 506–516.
Liang, Y. (2019). Investigation on factors affecting behavioral intention to use bike-sharing in nanning. Doctoral dissertation, University of the Thai Chamber of Commerce.
Loewen, S., Isbell, D. R., & Sporn, Z. (2020). The effectiveness of app‐based language instruction for developing receptive linguistic knowledge and oral communicative ability. Foreign Language Annals, 53(2), 209-233. 
López-Bonilla, L. M., & López-Bonilla, J. M. (2017). Explaining the discrepancy in the mediating role of attitude in the TAM. British Journal of Educational Technology, 48(4), 940–949.
Loyd, B. H., & Gressard, C. (1984). The effects of sex, age, and computer experience on computer attitudes. AIDS journal, 18(2), 67-77.
Maity, S., Sahu, T. N., & Sen, N. (2020). Panoramic view of digital education in COVID-19: A newly explored avenue. Review of Education. 1–19.
Manago, A. M. (2015). Media and the Development of Identity. Emerging Trends in the Social and Behavioral Sciences, 1-14.
Manas-Viniegra, L., Núnez-G_Omez, P., & Tur-Vines, V. (2020). Neuromarketing is a strategic tool for predicting how Instagramers have an influence on the personal identity of adolescents and young people in Spain. Volume 6, Issue 3 March 2020 Article e03578. Heliyon.
Marek, M. W., Chew, C. S., & Wu, W. V. (2020). Teacher experiences in converting classes to distance learning in the COVID-19 pandemic.  International Journal of Distance Education Technologies, 19, 40–60.
Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers College Record, 108, 1017–1054.  
Moreno, V., Cavazotte, F., & Alves, I. (2017). Explaining university students’ effective use of e-learning platforms. British Journal of Educational Technology, 48(4), 995–1009.
Mun, S. H., & Abdullah, A. H. (2016). A review of the use of smart boards in education. 2016 IEEE 8th international conference on engineering education (ICEED). IEEE.
Nov, O., & Ye, C. (2009). Resistance to change and the adoption of digital libraries: An integrative model. Journal of the American Society for Information Science and Technology, 60(8), 1702-1708.
Oye, N. D., Iahad, N. A., & Ab Rahim, N. (2014). The history of the UTAUT model and its impact on ICT acceptance and usage by academicians. Education and Information Technologies, 19(1), 251–270.
Ozkan, S., & Koseler, R. (2009). Multi-dimensional students’ evaluation of e-learning systems in the higher education context: An empirical investigation. Computers & Education, 53(4), 1285–1296.
Pan, W., & Tang, M. (2004). Examining the effectiveness of innovative instructional methods on reducing statistics anxiety for graduate students in the social sciences. Journal of Instructional Psychology, 31(2).
Parayitam, S., Desai, K. J., Desai, M. S., & Eason, M. K. (2010). Computer attitude as a moderator in the relationship between computer anxiety, satisfaction, and stress. Computers in Human Behavior, 26(3), 345-352.
Park, S. Y., Nam, M. W., & Cha, S. B. (2012). University students’ behavioral intention to use mobile learning: Evaluating the technology acceptance model. British Journal of Educational Technology, 43(4), 592–605. 
Park, S. Y., Nam, M. W., & Cha, S. B. (2012). University students’ behavioral intention to use mobile learning: Evaluating the technology acceptance model. British Journal of Educational Technology, 43(4), 592–605.
Paul, N., & Glassman, M. (2017). Relationship between internet self-efficacy and internet anxiety: A nuanced approach to understanding the connection. Australasian Journal of Educational Technology, 33(4), 147-165.
Perrotta, D. (2020). Universities and Covid-19 in Argentina: From community engagement to regulation. Studies in Higher Education, 46, 1–14. 10.1080/030 75079. 2020.1859679
Porter, W. W., & Graham, C. R. (2016). Institutional drivers and barriers to faculty adoption blended learning in higher education. British Journal of Educational Technology, 47(4), 748–762. 
Pursel, B. K., Zhang, L., Jablokow, K. W., Choi, G. W., & Velegol, D. (2016). Understanding MOOC students: motivations and behaviours indicative of MOOC completion. Journal of Computer Assisted Learning, 32 (3), 202–217.
Rahimi, M., &|Soleymani, E. (2015). The impact of mobile learning on listening anxiety and listening comprehension. English Language Teaching, 8(10), 152-161.
Reinders, H., & Benson, P. (2017). Research agenda: Language learning beyond the classroom. Language Teaching, 50(4), 561–578.
Reinders, H., & Stockwell, G. (2017). Computer‐assisted second language acquisition. In S. Loewen & M. Sato (Eds.), The Routledge handbook of instructed second language acquisition (pp. 361–375). New York: Routledge.
Richmond, G., Cho, C., Gallagher, H. A., He, Y., & Petchauer, E. (2020). The critical need for a pause in the COVID-19 era. Journal of Teacher Education, 71, 375–378.                       
Rogers, E. M. (1983). Diffusion of innovations, 3rd ed. New York: The Free Press.
Roslani, E. (2007). Computer anxiety and computer self-efficacy among accounting educators at universiti teknologi MARA, Malaysia. Doctor of Philosophy, Virginia Polytechnic Institute, and State University, Blacksburg, Virginia.
Ros, S., Hernández, R., Caminero, A., Robles, A., Barbero, I., Maciá, A., & Holgado, F. P.  (2015). On the use of extended TAM to assess students’ acceptance and intent to use third-generation learning management systems. British Journal of Educational Technology, 46(6), 1250–1271.
Russell, V. (2020). Language anxiety and the online learner. Foreign Language Annals, 53(2), 338-352.
Russell, V., & Murphy‐Judy, K. (2020). Teaching a language online: A guide to designing, developing, and delivering online, blended, and flipped language courses. New York: Routledge.
Saade, R., Kira, D., & Nebebe, F. (2013). The challenge of motivation in e-Learning: Role of anxiety [Paper presentation]. The Informing Science and Information Technology Education Conference.
Scherer, R., Siddiq, F., & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Computers & Education, 128, 13-35.
Schindler, L. A., Burkholder, G. J., Morad, O. A., & Marsh, C. (2017). Computer-based technology and student engagement: A critical review of the literature. International Journal of Educational Technology in Higher Education, 14(1), 1–28.
Shumaker, C., Loranger, D., & Dorie, A. (2017). Dressing for the Internet: A study of female self-presentation via dress on Instagram. Fashion, Style & Popular Culture, 4(3), 365–382.
Soong, M. B., Chan, H. C., Chua, B. C., & Loh, K. F. (2001). Critical success factors for on-line course resources. Computers & Education, 36(2), 101–120.
Steenbergen-Hu, S., & Cooper, H. (2014). A meta-analysis of the effectiveness of intelligent tutoring systems on college students’ academic learning. Journal of Educational Psychology, 106, 331–347.
Sumak, B., Hericko, M., Polancic, G., & Pusnik, M. (2010). Investigation of e-learning system acceptance using UTAUT. International Journal of Engineering Education, 26(6), 1327–1342
SUmak, ˇ B., HeriˇcKo, M., & PuˇsNik, M. (2011). A meta-analysis of e-learning technology acceptance: The role of user types and e-learning technology types. Computers in Human Behavior, 27(6), 2067–2077.
Sun, J., & Rueda, R. (2012). Situational interest, computer self-efficacy, and self-regulation: Their impact on student engagement in distance education. British Journal of Educational Technology, 43(2), 191–204.
Tarhini, A., Hone, K., & Liu, X. (2015). A cross-cultural examination of the impact of social, organizational, and individual factors on educational technology acceptance between British and Lebanese university students. British Journal of Educational Technology, 46(4), 739–755.
Taylor, S. & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 144–176.
Teo, T. (2008). Pre-service teachers' attitudes towards computer use: A Singapore survey. Australasian Journal of Educational Technology, 24(4).
Teran-Guerrero, F. N. (2019). Aceptación de los estudiantes universitarios en el uso de los sistemas e-learning Moodle desde la perspectiva del modelo TAM. //Acceptance of university students in the use of Moodle e-learning systems from the perspective of the TAM model. Revista Ciencia UNEMI, 12(29), 63–76.
Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal computing: Toward a conceptual model of utilization. MIS Quarterly, 15(1), 124–143.
Vallerand, R. J. (1997). Toward a hierarchical model of intrinsic and extrinsic motivation. Advances in Experimental Social Psychology, 29, 271–360.
Venkatesh, V., & Davis, F. (2000). A theoretical extension of the Technology Acceptance Model: Four longitudinal field studies. Management Science, 46(2), 186–204.
Venkatesh, V., Morris, M., Davis, G., & Davis, F. (2003). User acceptance of information technology: Toward a unified view. Mis Quarterly, 27(3), 425-478.
Wilfong, J. D. (2006). Computer anxiety and anger: The impact of computer use, computer experience, and self-efficacy beliefs. Computers in human behavior, 22(6), 1001-1011.
Wu, Y. (2016). Factors impacting students' online learning experience in a learner-centred course. Journal of Computer Assisted Learning, 32(5), 416–429.
Volume 2, Issue 4 - Serial Number 4
ISBN 9783899664812
April 2023
Pages 79-106
  • Receive Date: 28 October 2022
  • Revise Date: 16 November 2022
  • Accept Date: 11 December 2022